ÉTUDE THERMODYNAMIQUE DE LA COMPLEXATION DE L'ARGENT PAR LA PIPÉRAZINE ET QUELQUES-UNS DE SES DÉRIVÉS EN MILIEU EAU-ETHANOL

O. ENEA, K. HOUNGBOSSA ET G. BERTHON

Laboratoire de Thermodynamique Chimique et Electrochimie de l'Université, 40, arenue du Recteur-Pineau, 86022 Poitiers (France) (Reçu le 30 Octobre 1972)

ABSTRACT

The stability constants of the complexes of Ag^+ ion with piperazine and its 2-methyl-, 2-methyl-1-*m*-tolyl-, 2-methyl-1-*p*-tolyl- and 1-(*p*-methoxyphenyl)-2-methyl-derivatives are obtained at 25 °C in water-ethanol (52%, w/w) solvent and KNO₃ 0.1 M ionic strength, by means of corresponding metal-complex electrodes.

The enthalpies of formation are determined by direct calorimetry, in the same conditions of temperature and medium.

The comparison of the thermodynamic functions ΔG_n° , ΔH_n° , ΔS_n° allows a discussion about the ability of each amine to coordinate, in terms of nature and position of the entering group.

RÉSUMÉ

Les constantes de stabilité des complexes formés par l'ion Ag⁺ avec la pipérazine et ses dérivés 2-méthyl-, 2-méthyl-1-*m*-tolyl-, 2-méthyl-1-*p*-tolyl- et 1-(*p*-méthoxyphényl)-2-méthyl- ont été déterminés statopotentiométriquement à 25°C, en milieu eau-éthanol à 52% en poids ($\mu = 0.1 \text{ M KNO}_3$), au moyen des électrodes métalcomplexes correspondantes.

Les enthalpies standard de complexation ont ensuite été obtenues par calorimétrie directe, dans les mêmes conditions de température et de milieu.

La comparaison des grandeurs thermodynamiques standard ΔG_n° , ΔH_n° , ΔS_n° propres à chaque système permet d'interpréter l'influence de la nature et de la position du groupement substituant sur l'aptitude à la coordination de chaque amine.

ABRÉVIATIONS

	- /	-
р	piper	azıne

- 2mp 2-méthylpipérazine
- mtp 2-méthyl-1-m-tolylpipérazine
- ptp 2-méthyl-1-p-tolylpipérazine
- pmp 1-(p-méthoxyphényl)-2-méthylpipérazine

INTRODUCTION

Des études thermodynamiques concernant les équilibres de protonation et de complexation à l'argent de la pipérazine et d'un certain nombre de ses dérivés en milieu aqueux ont été récemment effectuées^{1,2}.

Par ailleurs, d'autres dérivés de ce coordinat n'étant pas suffisamment solubles dans l'eau, leurs constantes et leurs enthalpies de protonation ont dû être déterminées dans un solvant eau-éthanol à 52% en poids³.

Poursuivant cette dernière étude, nous nous proposons ici de déterminer les constantes de stabilité et les enthalpies standard de formation des complexes engendrés par l'ion Ag⁺ avec les mêmes coordinats : outre la pipérazine, nous envisagerons donc successivement la 2mp, la mtp, la ptp et la pmp.

Les expériences, comme en milieu aqueux², procèderont de deux techniques distinctes : la statopotentiométrie, propre à la détermination des constantes de stabilité (et des enthalpies libres standard qui en sont issues); la calorimétrie directe, qui permet le calcul, au moyen d'un programme approprié⁶, des enthalpies standard de complexation dans chaque système.

Ces grandeurs, ainsi que les entropies standard correspondantes, seront enfin comparées, dans le but d'interpréter les effets dûs à la nature et à la position des groupements substituants sur l'aptitude à la complexation de chacun des coordinats considérés.

APPAREILLAGE ET PRÉCISION

Tant en ce qui concerne la partie potentiométrique que la partie calorimétrique, les appareils utilisés sont rigoureusement identiques à ceux de notre précédente étude en milieu aqueux². Il en est d'ailleurs de même des provenances des produits, ainsi que de leurs qualités.

Les seules différences notables sont dues à la nature du solvant : les mesures de pH se réfèrent en effet à un tampon de Bates⁴ approprié ($pH_s = 5.40$) et l'enthalpie de protonation de l'ion hydroxyle, intervenant dans nos calculs, est posée égale à -11.3 kcal mol⁻¹ (réf. 5).

CALCUL DES CONSTANTES DE STABILITÉ

L'étude quantitative des équilibres électrochimique^c des électrodes métalcomplexes successivement envisagées a été effectuée en mesurant les écarts entre tensions réversibles de cellules couplées du type

$$Ag|[Ag(A)_{n}]^{+}, A, KNO_{3}(0.1 M || KNO_{3} || KCl| Hg_{2}Cl_{2}-Hg$$
(2)
(sat. aq.) (sat. aq.)

Le symbole A représente tour à tour les coordinats p, 2mp, mtp, ptp et pmp, dont les concentrations réellement à l'équilibre ont dû, comme en milieu aqueux², être corrigées des quantités engagées avec l'ion H⁺.

Le pH a donc été mesuré à chaque addition de coordinat dans (2) par l'intermédiaire de la cellule

E.V.
$$|H^+$$
, AH^+ , AH_2^{2+} , KNO_3 (0.1 *M*) $|| KNO_3 || KCl |Hg_2Cl_2-Hg$ (3)
(sat. aq.) (sat. aq.)

Nous ne reviendrons pas ici sur la technique opératoire du calcul des concentrations [A] et $[AH^+]$, identique à celle mise en œuvre en milieu aqueux².

Le Tableau 1 consigne les concentrations globales de coordinat, les pH, les concentrations de coordinat à l'équilibre et les écarts ΔE mesurés entre les tensions réversibles des cellules (1) et (2) pour les systèmes Ag-p et Ag-2mp.

TABLEAU 1

MESURES POTENTIOMÉTRIQUES : DONNÉES EXPÉRIMENTALES POUR LE CALCUL DES CONSTANTES DE STABILITÉ DES COMPLEXES DES SYSTÈMES Ag-p ET Ag-2mp

Système Ag-p				Système Ag	—2тр		
$C_{\perp} \times 10^3$ (mol l ⁻¹)	рH	$[A] \times 10^{3}$ (mol l ⁻¹)	Δ <i>E</i> (<i>mV</i>)	$C_A \times I0^3$ (mol l^{-1})	p <i>H</i>	[A] × 10 ³ (mol l ⁻¹)	Δ <i>E</i> (mV)
2.798	10.13	2.490	76.25	2.741	10.19	2.514	87.70
3.661	10.16	3.278	87.30	3.587	10.24	3.321	99.70
4.494	10.17	4.035	96.15	4.403	10.28	4.102	108.95
5.297	10.18	4.773	104.00	5.189	10.31	4.858	116.80
6.071	10.19	5.477	110.20	6.680	10.35	6.283	129.10
6.818	10.19	6.154	116.00	7.389	10.35	6.954	134.15
7.541	10.19	6.810	120.75	8.072	10.36	7.579	138.35
8.239	10.20	7.450	124.80	8.734	10.37	8.210	142.10
8.914	10.20	8.125	128.40	9.374	10.37	8.212	145.50
9.568	10.20	8.779	132.00	9.994	10.37	9.400	148.85
10.201	10.20	9.412	135.35	10.595	10.38	10.003	151.75
10.814	10.20	10.025	138.35	11.177	10.38	10.561	154.35
11.408	10.20	10.619	141.05	11.742	10.39	11.102	156.75
11.985	10.20	11.196	144.00	12.290	10.39	11.621	159.30
12.544	10.20	11.755	146.10	12.821	10.39	12.223	161.50
13.086	10.20	12.297	148.10	13.338	10.39	12.612	163.40
13.613	10.20	12.824	150.40	13.838	10.39	13.090	165.35
14.124	10.20	13.335	151.95				

Le Tableau 2 rassemble les mêmes grandeurs, relatives aux systèmes Ag-mtp, Ag-ptp et Ag-pmp. Notons que les expériences ont été effectuées trois fois au minimum et que les valeurs rapportées par les Tableaux 1 et 2 sont données à titre d'exemple.

MESURES DES COM	PLEXES	TTIOMÉTRIC DES SYSTI	QUES : DON ÈMES Ag-mi	4NÉES EXPÉRI (p, Ag-ptp ET /	IMENTA Ag-pmp	ALES POUR	LE CALCUL	DES CONST.	ANTES	de stabilit	Ê
Système As	dəm-5			Système Ag	d)d-,			Système Ag	dınd-		
C _A × 10 ³ (nol 1 ⁻¹)	hłą	(1 -1 lom) c01 × [V]	ΔE (mV)	CA × 103 (nul 1-1)	JIQ	(1 -1 lou) v01 × [V]	ΔF (mV)	CA × 10 ³ (mol 1 ⁻¹)	p <i>if</i>	(1 -1 lout) (1 -1 lout)	ΔE (mV)
0.881	9,09	0.881	19.30	0,955	9.18	0.870	23.35	1.913	19'6	1.837	39.05
3.704	9,53	3.558	50.00	1.875	9.28	1.737	37.05	4.522	77.6	4.397	60.70
4.545	9,56	4.379	56.45	4.431	9.40	4.180	61.00	5.330	9.81	5.194	65.25
5.357	9,58	5.170	61.70	5.223	9,41	4,936	65.95	6.109	9.83	5.961	69.10
6.140	9,59	169.2	66.05	5.986	9.43	5.667	70.50	6.863	9.84	6.702	72.35
8.333	9'61	8.063	77.50	6.725	9,44	6.375	75.30	8.971	9,86	8.767	81.45
9.016	9,62	8.725	80.45	7.436	9.44	7.053	78.50	9.629	9,86	9.410	84.15
9.677	9,62	9.368	83.20	8.125	9.45	7.715	81.55	10.265	9.86	10.033	86.60
10.317	9,62	9,989	85.50	9.435	9.45	8,958	87.55	10.883	9.87	10.642	88.70
10.938	9,63	10.595	88.05	10.059	9.45	9.551	90.50	11.480	9.87	11.228	90.70
11.538	9,63	11.195	90,30	11.818	9,45	11.221	97.70	12.624	9.88	12.351	94.05
12.121	9,64	11.746	92.70	12.370	9.45	11.745	100.05	13.169	9.88	12.885	95.35
12.687	9,64	12.297	94.30	12.904	9.45	12.252	102.65	13.699	9.88	13.405	96.85
				13.424	9.45	12.746	105.15	14.215	9.89	119.61	98.25
				13.929	9.45	13.225	107.30				

:

l

TABLEAU 2

Les valeurs logarithmiques des constantes de stabilité des complexes de ces différents systèmes, calculées par la méthode de Leden et dont l'incertitude peut être évaluée à ± 0.02 unité près, sont consignées dans le Tableau 3.

TABLEAU 3

TABLEAU 4

CONSTANTES DE STABILITÉ DES COMPLEXES MIS EN ÉVIDENCE ($\mu = 0.1 \text{ M}$; 25°C; SOLVANT EAU-ÉTHANOL À 52% EN POIDS)

Système	log β ₁	log β ₂	
Ag-p	3.41	6.28	
Ag-2mp	3.52	6.52	
Ag-mtp	3.06	5.17	
Ag-ptp	3.18	5.28	
Ag-pmp	3.23	5.03	

CALCUL DES ENTHALPIES DE FORMATION DES COMPLEXES

Le réactif ajouté dans le vase à réaction a été tantôt le groupe central, tantôt le coordinat.

Comme en milieu aqueux², le pH α la solution a été mesuré après chaque addition dans des conditions de concentration, de température et de milieu rigoureusement identiques à celles utilisées dans le calorimètre.

Les concentrations de coordinat à l'équilibre ont été calculées au moyen du programme APH⁶ et les chaleurs Q mesurées ont été corrigées non seulement des chaleurs de dilution des réactifs et de formation (ou dissociation) de l'eau, mais aussi de celles dues à la protonation (ou déprotonation) du coordinat.

Les Tableaux 4, 5, 6, 7, 8 consignent le volume de la solution, les concentrations d'ion H^+ à l'équilibre, les chaleurs de réaction corrigées et les enthalpies moyennes de complexation correspondantes, pour les sytèmes Ag-p, Ag-2mp, Ag-mtp, Ag-ptp et Ag-pmp respectivement.

V (ml)	$C_A \times 10^3$ (mol l^{-1})	$C_{B} \times 10^{3}$ (mol l^{-1})	$[H]^+ \times 10^{10}$ (mol l^{-1})	Q (cal)	$\frac{\Delta H}{(cal \ mol^{-1})}$	$\frac{\overline{\Delta H}}{(cal \ mol^{-1})}$
95.2	0.4201	0.9979	4.365	0.1720	1811	1816
95.5	1.0471	0.9947	1.972	0.4232	4455	4432
96.0	2.0833	0.9896	1.122	0.7067	7439	7410
97.0	4.1237	0.9794	0.468	0.9502	10002	10025
98.0	6.1224	0.9694	0.324	1.0295	10837	10875
100.0	10.0000	0.9500	0.224	1.0876	11448	11462
95.5	19.8950	0.5235	0.266	0.5925	11850	11858
96.0	19.7920	1.0417	0.288	1.1840	11840	11837
97.0	19.5880	2.0619	0.335	2.3602	11801	11788
98.0	19.3880	3.0612	0.398	3.5160	11720	11725

MESURES CALORIMÉTRIQUES : DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-p

TABLEAU 5

MESURES CALORIMÉTRIQUES : DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-2mp

V (ml)	$C_A \times 10^3$ (mol l^{-1})	$C_B \times 10^3$ (mol l^{-1})	$[H^+] \times 10^{10}$ (mol l^{-1})	Q (cal)	$\overline{\Delta H}$ (cal mol ⁻¹)	$\overline{\Delta H}$ (cal mol ⁻¹)
95.2	0.4202	0.9979	4.169	0.9418	2044	2049
95.5	1.0471	0.9947	1.820	0.4664	4910	4886
96.0	2.0833	0.9896	0.832	0.7708	8114	8090
97.0	4.1237	0.9794	0.380	1.0004	10531	10550
98.0	6.1224	0.9694	0.275	1.6685	11248	11261
100.0	10.0000	0.9500	0.195	I.1148	11735	11727
95.5	19.8950	0.5235	0.202	0.6012	12024	12035
96.0	19.7920	1.0417	0.224	1.1997	11997	12020
97.0	19.5880	2.0619	0.263	2.3944	11972	11982
98.0	19.3880	3.0612	0.313	3.5802	11934	11935

TABLEAU 6

MESURES CALORIMÊTRIQUES : DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-mtp

V (ml)	$C_A \times 10^3$ (mol 1^{-1})	$C_B \times 10^3$ (mol l^{-1})	[H ⁺]×10 ¹⁰ (mol l ⁻¹)	Q (cal)	$\overline{\Delta H}$ (cal mol ⁻¹)	$\frac{\overline{\Delta H}}{(cal \ mol^{-1})}$
05 7	0.1202	0.0070	12 020	0.1275	1242	1740
95.2	1 0471	0.9917	6 310	0.1275	3079	3016
96.0	2.0833	0.9896	3 715	0.4650	4895	4861
97.0	4.1237	0.9794	2.089	0.6485	6827	6831
98.0	6.1224	0.9694	1.514	0.7525	7921	7912
106.0	10.0000	0.9500	1.047	0.8647	9102	9125
95.5	19.8950	0.5235	1.101	0.5251	10502	10514
96.0	19.7920	1.0417	1.259	1.0421	10421	10434
97.0	19.5880	2.0619	2.349	2.0500	10250	10263
98.0	19.3880	3.0612	3.496	1.0210	10070	10072

TABLEAU 7

MESURES CALORIMÉTRIQUES : DONNÉES EXPÉRIMENTALES DU SYSTÈME Ag-ptp

V (ml)	$C_A \times 10^3$ (mol 1 ⁻¹)	$C_B \times 10^3$ (mol l^{-1})	$[H^+] \times 10^{10}$ (mol l^{-1})	Q (cal)	$\overline{\Delta H}$ (cal mol ⁻¹)	$\overline{\Delta H}$ (cal mol ⁻¹)
	0 (202		12 190			1171
95.2	0.4202	0.9979	13.160	0.1111	1170	11/4
95.5	1.04/1	0.9947	6.457	0.2575	2711	2693
96.0	2.0833	0.9896	3.846	0.4262	4486	4481
97.0	4.1237	0.9794	2.223	0.6222	6549	6546
98.0	6.1224	0.9694	1.622	0.7278	7661	7716
100.0	10.0000	0.9500	1.122	0.8504	8952	9023
95.5	19.8950	0.5235	1.022	0.5195	10390	10494
96.0	10.7920	1.0417	1.175	1.0301	10301	10411
97.0	19.5880	2.0619	1.396	2.0284	10142	10230
98.0	19.3880	3.0612	1.679	2.9796	9932	10027

314

TABLEAU 8

MESURES CALORIMÉTRIQUES : DONNÉES EXPÉRIMENTALES Ag-pmp

V (ml)	$C_A \times 10^3$ (mol 1 ⁻¹)	$C_B \times 10^3$ (mol l ⁻¹)	$[H^+] \times 10^{10}$ (mol l^{-1})	Q (cal)	$\widehat{\Delta H}$ (cal mol ⁻¹)	∆H (cal mol ⁻¹)
95.2	0.4202	0.9979	10.000	0.1368	1440	1445
95.5	1.0471	0.9947	5.248	0.2986	3143	3135
96.0	2.0833	0.9896	3.199	0.4590	4832	4804
97.0	4.1237	0.9794	1.841	0.6033	6351	6360
98.0	6.1224	0.9694	1.288	0.6823	7182	7188
100.0	10.0000	0.9500	0.944	0.7764	8173	8183
95.5	19.8950	0.5235	1.175	0.4775	9551	9548
96.0	19.7920	1.0417	1.273	0.9465	9465	9466
97.0	19.5880	2.0619	1.479	1.8598	9299	9293
98.0	19.3880	3.0612	1.738	2.7303	9101	9111

Les enthalpies standard de formation des complexes ont été calculées sur ordinateur par la méthode des moindres carrés⁶.

Les résultats sont groupés dans le Tableau 9 où sont en outre consignées les enthalpies libres standard et les entropies standard relatives à chaque système.

TABLEAU 9

GRANDEURS THERMODYNAMIQUES DE COMPLEXATION ($\mu = 0.1$ M; 25°C; SOLVANT ÉTHANOL À 52% EN POIDS)

Coordinat	p	2mp	mip	pip	ртр
$-\Delta G_1^\circ$ (kcal mol ⁻¹)	4.66	4.81	4.18	4.34	4.41
$-\Delta G_{1,2}^{\circ}$ (kcal mol ⁻¹)	3.92	4.10	2.88	2.87	2.46
$-\Delta G_2^{-1}$ (kcal mol ⁻¹)	8.58	8.91	7.06	7.21	6.87
$-\Delta H_1^{-1}$	7.779±0.016	7.758±0.014	6.249 ± 0.014	6.152 ± 0.036	6.415±0.010
$-\Delta H_{1,2}^{(kcal mol^{-1})}$	4.403	4.522	6.238	6.343	6.035
$-\Delta H_2^\circ$ (kcal mol ⁻¹)	12.182±0.025	12.280 ± 0.020	12.487±0.045	12.495±0.114	12.450 ± 0.042
$-\Delta S_1^{\circ}$ (cal mol ⁻¹ deg ⁻¹)	10.5	9.9	6.9	6.1	6.7
$-\Delta S_{1,2}^{2}$ (cal mol ⁻¹ deg ⁻¹)	1.6	1.4	11.3	11.6	12.0
$-\Delta S_2^\circ$ (cal mol ⁻¹ deg ⁻¹)	12.1	11.3	18.2	17.7	18.7

La colonne de droite des Tableaux 4, 5, 6, 7, 8 contient les valeurs des enthalpies moyennes de complexation recalculées avec ces résultats, ce qui permet d'apprécier la précision de l'ensemble de nos mesures.

DISCUSSION

Comparons tout d'abord les résultats des sytèmes Ag-p et Ag-2mp à leurs homologues obtenus en milieu aqueux². Les valeurs de leurs enthalpies standard ΔH_1° sont sensiblement équivalentes en solvant alcoolique; de même, l'ordre de classement des enthalpies $\Delta H_{1,2}^{\circ}$ et ΔH_2° entre ces deux systèmes y est inversé. On peut en conclure que l'effet inductif du groupement CH₃ en position 2 a des conséquences plus importantes dans le solvant mixte que dans l'eau.

En outre, les valeurs entropiques ΔS° (Ag-p) et ΔS° (Ag-2mp), de même que leurs différences, sont moins importantes qu'en milieu purement aqueux. La formation de la liaison à l'ion Ag⁺ semble donc expulser une quantité moindre de molécules d'eau d'hydratation, ce qui peut-être interprété comme une diminution du rôle de l'eau dans la réaction en solvant mixte. Les valeurs des enthalpies de dissolution des coordinats dans ces milieux⁷ confirment d'ailleurs cette hypothèse.

Par ailleurs, si l'on compare la formation du premier complexe d'argent à la première étape de protonation du point de vue de la règle de parallèlisme basicitéstabilité, l'exception relevée concernant le classement des systèmes Ag-p et Ag-2mp tend également à montrer que le rôle inductif du groupement méthyl augmente encore plus dans l'éthanol à 52% que dans l'eau, en regard des effets de solvant impliqués par sa présence.

Examinons maintenant les résultats obtenus pour l'ensemble des systèmes étudiés dans le solvant mixte.

Le comportement des systèmes engendrés par les coordinats de type n-phénylsubstitué se différencie nettement de celui des deux autres Ag-p et Ag-2mp.

Si l'on prend en considération la tentative d'interprétation déjà avancée pour le système Ag-N-phénylpipérazine en milieu aqueux, il semble que l'on puisse expliquer les résultats de la manière suivante.

Le premier complexe des systèmes Ag-p et Ag-2mp peut prendre la forme « bateau »⁷ : son enthalpie de formation ΔH_1° est donc inférieure (en valeur algébrique) à celle d'un complexe où le coordinat reste en forme « chaise » (ce qui est le cas des trois autres systèmes); de même, son entropie est plus basse (en valeur algébrique), du fait de la contrainte imposée à l'ensemble de l'édifice solvaté.

A la formation du deuxième complexe, le coordinat retrouve la forme « chaise », en libérant une entropie de réaction supérieure à celle des trois systèmes ne produisant pas de changement de structure. De plus, l'enthalpie $\Delta H_{1,2}^{\circ}$ n'est plus « activée » par la forme «bateau » et prend une valeur plus élevée.

Inversement, les systèmes à coordinat de type N-phénylsubstitué ont un comportement plus normal : les enthalpies ΔH_1° et $\Delta H_{1,2}^{\circ}$ sont sensiblement équivalentes, dénotant deux liaisons successives de même type.

En outre, la formation de leur deuxième complexe suscite une entropie très basse, qui pourrait provenir de la répulsion réciproque des groupements phényl extrêmes.

En ce qui concerne enfin leur classement relatif, on n'observe pas de variation

316

importante d'une quelconque grandeur thermodynamique d'un de ces systèmes à l'autre, contrairement à ce qui avait été enregistré lors de l'étude de la protonation des coordinats correspondants³ : ceci semble indiquer une nouvelle fois² que l'eau joue un rôle plus grand vis-à-vis de l'ion H⁺ que vis-à-vis de l'ion Ag⁺; de plus, ce dernier rôle s'estompe encore davantage dans un milieu partiellement aqueux.

BIBLIOGRAPHIE

- 1 O. Enea, K. Houngbossa, et G. Berthon, Electrochim. Acta, 17 (1972) 1585.
- 2 K. Houngbossa, G. Berthon et O. Enea, Thermochim. Acta, 6 (1973) 215.
- 3 G. Berthon, O. Enea et K. Houngbossa, C. R. Acad. Sci., C273 (1972) 1140.
- 4 R. G. Bates, Determination of pH: Theory and Practice, Wiley, New York, 1964.
- 5 J. W. Larson et L. G. Hepler, dans J. F. Coetzee et C. D. Ritchie (éds.), Solute-Solvent Interactions, Marcel Dekker, New York et Londres, 1969, p. 31.
- 6 G. Berthon et G. Valensi, Bull. Soc. Chim. Fr., 2 (1972) 479.
- 7 O. Enea, Thèse d'État, Poitiers, 1972, CNRS AO 7470.